

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

191118915

CO-ORDINATED SCIENCES

0654/33

Paper 3 Theory (Core)

May/June 2019

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 36.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 30 printed pages and 6 blank pages.

1 (a) Fig. 1.1 is a diagram of an animal cell.

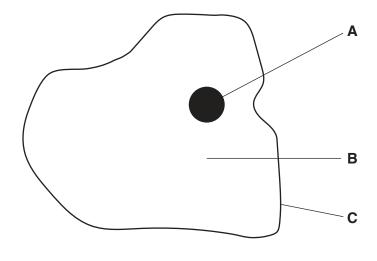


Fig. 1.1

Table 1.1 shows the parts labelled in Fig. 1.1.

Use Fig. 1.1 to complete Table 1.1.

Table 1.1

name of part	letter in Fig. 1.1	function
		controls what enters and leaves the cell
	В	
		contains genetic material

[3]

(b) Animal cells cannot photosynthesise.

Describe the photosynthe	of	photosynthesis,	and	state	why	animal	cells	are	unable	to

(c)	Res	spiration occurs in living cells. Water is a product of respiration.					
(0)	1100	piration occurs in living cells. Water is a product of respiration.					
	(i)	Name one other product of respiration.					
		[1]					
		[']					
	(ii)	Describe how water moves out of animal cells.					
		Include the name of the process in your answer.					
		[3]					
		[Total: 9]					

2 Fig. 2.1 shows the chemical symbols of five elements in Period 4 of the Periodic Table.

A copy of the whole Periodic Table is on page 36.

19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K						Mn		Co								Br	Kr

Fig. 2.1

(a) (i)	Explain what the numbers 19 to 36 represent for the elements in Period 4 from K to Kr.									
		[1]								
(ii)	Using only the symbols shown in Fig. 2.1, ide	entify:								
	a metallic element									
	a non-metallic element									
	a transition metal									
	a halogen									
	the least reactive element in the period									
	an element that reacts violently with water.									
		[3]								

(b) An atom of phosphorus contains 15 electrons.

Complete Fig. 2.2 to show the number of electrons in each shell of a phosphorus atom.

One electron in each shell has been drawn for you.

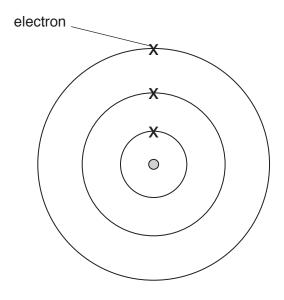
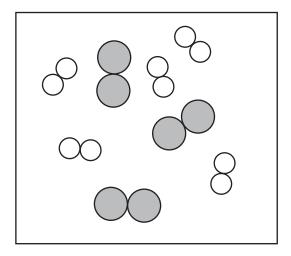



Fig. 2.2

[2]

- (c) The elements hydrogen and oxygen combine to form water, $\rm H_2O$.
 - Fig. 2.3 shows molecules in a mixture of hydrogen and oxygen.
 - Fig. 2.4 shows molecules in water vapour.

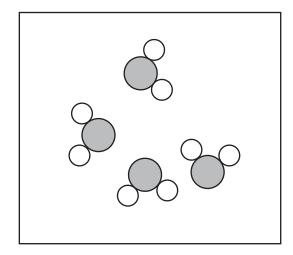


Fig. 2.3 Fig. 2.4

(i)	State the formula of an oxygen molecule.
	[1]
(ii)	Use Fig. 2.3 and Fig. 2.4 to describe one difference between a mixture of two elements and a compound of two elements.
	[2]
	[Total: 9]

3 (a) Fig. 3.1 shows four different parts of a cyclist's journey.

1. eating food

2. riding along a flat road

3. riding up a hill

4. riding down a hill

Fig. 3.1

Complete the sentences about **useful** energy transformations using words or phrases from the list. You may use each word or phrase once, more than once or not at all.

che	emical potential	gravitational potential	kinetic	sound	thermal
	The cyclist starts his	day by eating food. This prov	ides a store of		
	energy within the cyc	clist's body.			
	This energy in the c	yclist's body is transferred to			energy as the
	cyclist rides along th	e flat road.			
	The cyclist rides up a	a hill and some of the energy is	s transferred to		
	energy.				
	When the cyclist ride	es down a hill he does not ne	ed to pedal. T	he cyclist ga	ins speed as the
		energy is transferred	to kinetic ene	rgy.	[3]
(b)	·	bicycle for a total of 0.5 hours	s and then stop	os. The jourr	ney was 12km.
	Show your working.				

average speed = km/h [2]

(c) Fig. 3.2 shows the speed-time graph for part of the cyclist's journey.

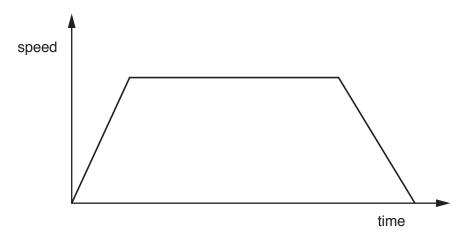


Fig. 3.2

- (i) Label with an **X** a point where the cyclist is at rest. [1]
- (ii) Label with a Y a point where the cyclist is moving with changing speed. [1]
- (iii) Label with a **Z** a point where the cyclist is moving with constant speed. [1]
- (d) The cyclist uses a bicycle light.

The bicycle light circuit contains a cell, a switch and a lamp.

(i) Draw a circuit diagram for the bicycle light.

[2]

(ii)	The potential difference across the lamp is 1.5 V.
	The current flowing in the circuit is 0.75A.
	Calculate the resistance of the lamp.
	Show your working.

resistance = Ω [2] [Total: 12]

4 (a) Table 4.1 shows the types and number of teeth in an adult human.

Table 4.1

type of tooth	number of tooth type in adults
canine	4
incisor	8
molar	12
pre-molar	8

	(i)	Calculate the total number of teeth in this adult human.
		[1]
	(ii)	Use your answer in (a)(i) to calculate the percentage of human teeth which are incisors.
		Show your working.
		% [1]
	(iii)	Suggest why herbivores such as sheep have a larger percentage of molars than humans.
		Explain your answer.
		[2]
(b)	The	ere are two types of digestion.
	Sta	te the type of digestion that involves teeth.
		[1]
(c)	Dos	scribe two ways to take proper care of teeth.
(0)	_	
	1	
	2	
		[2]

https://xtremepape.rs/

5	(a)		substances calcium, calcium carbonate and calcium oxide react separately with dilute rochloric acid.
		(i)	The same salt is produced when the three substances named above react with dilute hydrochloric acid.
			Name this salt.
			[1]
		(ii)	Name the gases made when each of the three substances react separately with dilute hydrochloric acid. If no gas is made, write 'no gas'.
			calcium
			calcium carbonate
			calcium oxide[2]
	(b)	Cal	cium oxide is an ionic compound.
		Cal	cium atoms lose electrons to become calcium ions.
		Sta	te whether a calcium ion has a positive or a negative electrical charge.
		Exp	lain your answer.
		cha	rge
		exp	lanation
		••••	

(c) Fig. 5.1 shows a lime kiln.

In a lime kiln, calcium oxide, CaO, is obtained by heating calcium carbonate (limestone), $CaCO_3$. The reaction also produces carbon dioxide.

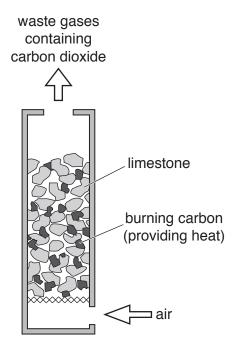


Fig. 5.1

(i)	The conversion of calcium carbonate to calcium oxide involved reaction.	s an endothermic chemical
	State the meaning of the term <i>endothermic</i> .	
		[1]
(ii)	Calcium oxide and carbon dioxide are simpler substances that	n calcium carbonate.
	State the type of chemical reaction that converts calcium car the lime kiln.	bonate to calcium oxide in
		[1]
(iii)	Construct the word equation for the reaction.	
	+	
		[1]
(iv)	Suggest why the mixture of waste gases leaving the lime kiln nitrogen.	contains a large amount of
		[1]
© UCLES 2019	0654/33/M/J/19	[Turn over

(d)	Some industrial waste products are treated with limestone.
	Explain why this is done.
	[2]
	[Total: 11]

6 (a) Fig. 6.1 shows a presenter talking into a microphone at a radio station, and a man listening to the radio show on a radio at home.

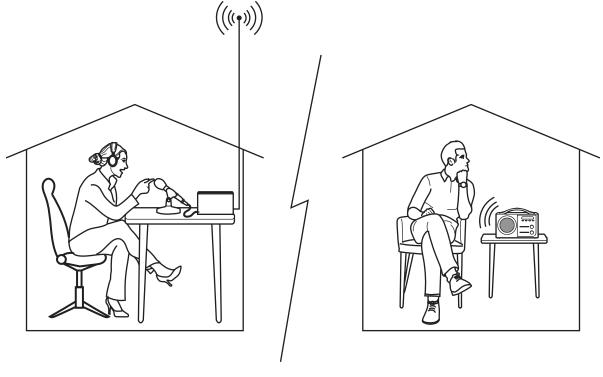


Fig. 6.1

(i) Write **radio waves** in the correct location in the incomplete electromagnetic spectrum in Fig. 6.2.

gamma rays	ultraviolet	visible			
				[1]	

Fig. 6.2

(ii) Fig. 6.3 shows soundwaves travelling in compressions (C) and rarefactions (R) from the loudspeaker to the ear of the man.

On Fig. 6.3 use a double headed arrow ($\leftarrow \rightarrow$) to show one wavelength.

Fig. 6.3

[1]

(iii) The distance from the radio station to the man is 500 km.

Suggest why the radio signal arrives at the man's radio almost instantly.

______[1]

- (b) The radio presenter is talking about photography.
 - (i) Complete the ray diagram in Fig. 6.4 to show how light rays from an object travel through a converging lens and are focused on the image sensor.

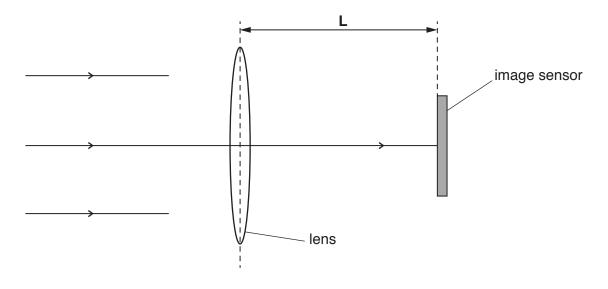


Fig. 6.4

(ii) State the name of the distance L shown in Fig. 6.4.

[1

- **(c)** The man investigates the properties of water.
 - (i) State the melting point of water.

(ii) The man boils the water in a kettle to produce steam.

Fig. 6.5 shows different arrangements of molecules in solids, liquids and gases.

Label each of the diagrams using the words **ice**, **steam** and **water** to show the correct arrangement of molecules for each.

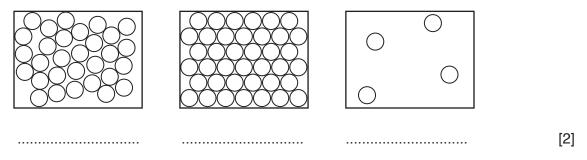


Fig. 6.5

[Total: 9]

[2]

7 (a) Complete the definition of the term *transpiration* using words or phrases from the list.
You may use each word or phrase once, more than once or not at all.

chlorophyll

condensation

	mesophyll	osmosis	phloem	root hair			
Transpiration is the loss of water vapour from plant leaves by							
of water at the surfaces of the cells followed by							
of water vapour through the stomata.							

diffusion

evaporation

(b) The graph in Fig. 7.1 shows the effect of humidity on the rate of transpiration.

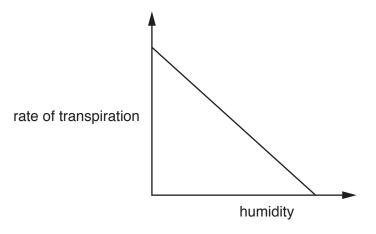
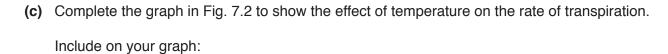



Fig. 7.1

Describe the relationship between humidity and transpiration.	
	[1

- labels on both axes
- a sketch of a suitable line.

Fig. 7.2

[2]

(d) Name the vessel in plants that transports water from the roots to the leaves.

[1]

- 8 Electrolysis is a process which uses electricity to break down a compound.
 - (a) Complete the sentences using words or phrases from the list.

Each word or phrase may be used once, more than once or not at all.

anode	cathode	cell	electrolyte
gases	insulator	ions	molecules
In electrolysis the lid	quid is called the		because it contains
	that are free	to move.	
The positive electro	ode is called the		and the negative
electrode is called th	e		[3]

(b) A student uses the apparatus shown in Fig. 8.1 to investigate the electrolysis of dilute sulfuric acid.

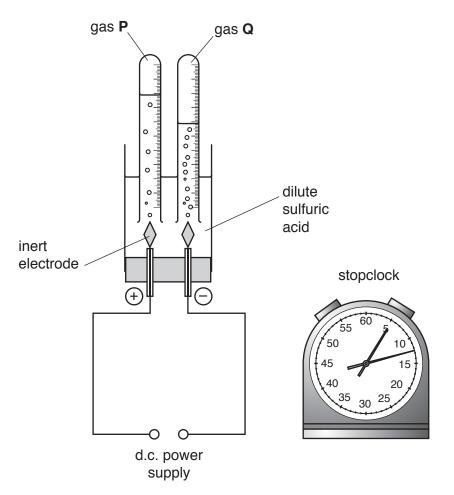


Fig. 8.1

The student turns on the power supply and starts the stopclock.

She records the volume of gas P and the volume of gas Q every minute for 20 minutes.

Her results are shown in Fig. 8.2.

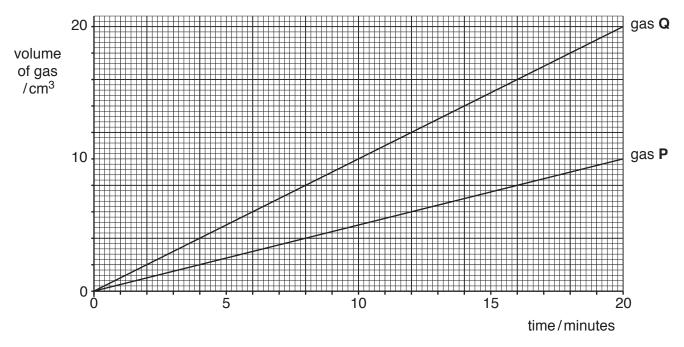


Fig. 8.2

(i)	Gas P forms at the positive electrode and gas Q forms at the negative electrode.	
	Identify the gases.	
	gas P	
	gas Q	
		[2

(ii) Using the graph, state the total volume of gas **P** produced during the investigation.

(iii) Use the information in Fig. 8.2 to compare quantitatively the rates of production of gas P and gas Q.

[1]

(iv) Use the information in Fig. 8.2 to calculate the rate at which gas **P** is produced in units of cm³/minute.

Show your working.

rate of production of gas
$$P = \dots cm^3$$
/minute [1]
0654/33/M/J/19 **[Turn over**

© UCLES 2019

c)	Metal M is extracted from the ore bauxite by electrolysis.				
	Metal M is used to make many useful products.				
	(i)	Name metal M .			
		[1]			
	(ii)	Bauxite is a finite resource.			
		State one way that the need for bauxite can be reduced.			
		[1]			
		[Total: 10]			

0654/33/M/J/19

- **9** Petroleum is a non-renewable energy resource used to produce electricity.
 - (a) Place a tick (✓) in the boxes to correctly describe each energy resource as either renewable or non-renewable.

energy resource	renewable	non-renewable
coal		
geothermal		
natural gas		
solar		
waves		

- 1	Γ	•
	_	
- 1		

(b)	State two	disadvantages	of energy	production	usina	wind turbi	nes
(~ /	Ciaio tiro	albaavaillagoo	or oriory	production	aonig	WILLIA LAIDI	

1	 	 	 	 	
2	 	 	 	 	

[2]

(c) Fig. 9.1 shows supply cables from a power station supported by pylons.

The cables are suspended loosely in hot weather.

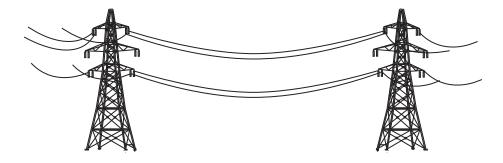


Fig. 9.1

xplain why the cables must be suspended loosely in hot weather.	
	•••
r	O1

(d) Fig. 9.2 shows a saucepan of water being heated on an electric cooker. The water is heated to boiling point and continues to boil for 30 minutes.

Fig. 9.2

Describe what happens to the temperature of the water while it is boiling.
[1]
The cooker is switched off and the water is allowed to cool.
Before heating, the mass of the water in the saucepan was 1000 g. The mass of the water in the saucepan is now 600 g.
Determine the mass of water that has been lost from the saucepan.
mass of water lost from the saucepan = g [1]
State what has happened to the water that has been lost from the saucepan.
[1]

[Total: 9]

Describe the difference between phenotypic variation and genetic variation .	
	Describe the difference between phenotypic variation and genetic variation.

(b) A class investigated the number of students that are able to roll their tongues.

Fig. 10.1 is a graph of the results.

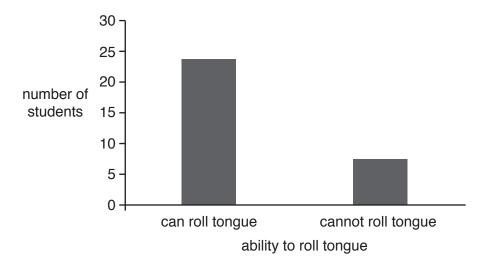


Fig. 10.1

Use evidence from Fig. 10.1 to explain why this is an example of discontinuous varia	ation.
	[1]

(c) The list shows some examples of different types of variation.

Place a tick (\checkmark) in the boxes to show **all** the examples of **continuous** variation.

height	
foot length	
sex (gender)	
types of teeth	
mass	

[2]

(d) Fig. 10.2 is a photograph of a giraffe, a mammal. Giraffes eat the leaves from branches on trees.

Fig. 10.2

The ancestors of giraffes had shorter necks.

Describe how giraffes developed long necks by natural selection.

Use the words variation, competition and alleles in your answer.

11 (a) Fig. 11.1 shows a beaker containing sand and aqueous sodium chloride.

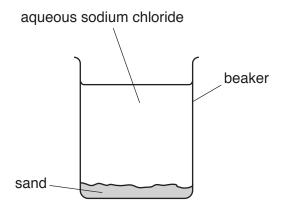


Fig. 11.1

the water from sodium chloride.
the sand from the aqueous sodium chloride
Suggest a method used to separate

(b) Fig. 11.2 shows fractional distillation being used to separate ethanol and water.

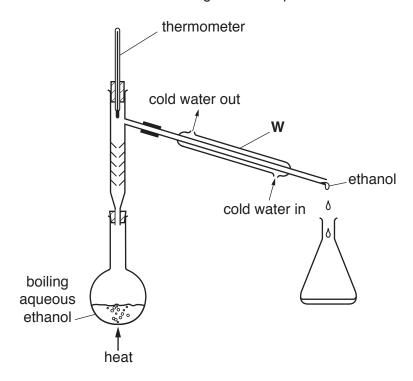


Fig. 11.2

(i)	Suggest the purpose of the part of the apparatus labelled W .
(ii)	Explain why ethanol can be separated from water by fractional distillation.

- (c) Fractional distillation is used in industry to obtain useful hydrocarbons from a raw material ${\bf R}$.
 - (i) Identify raw material **R**.

.....[1

(ii) Ethane and ethene are hydrocarbons.

The structure of an ethane molecule is shown below.

Complete the diagram of an ethene molecule.

ethane	ethene
H H	H H — C C

(d) Alkenes are produced when alkanes are heated in the presence of a catalyst.

Fig. 11.3 shows laboratory apparatus used for this reaction.

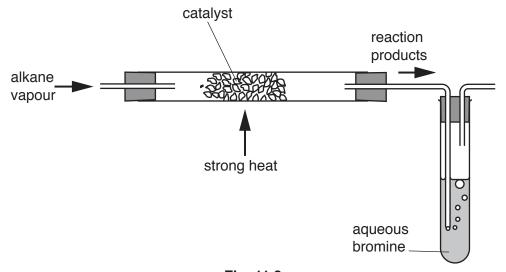


Fig. 11.3

(i)	Name the process that converts alkanes into alkenes.	
		[1]
(ii)	State the colour change which is observed in the bromine solution during the process	-
	colour changes from to	[2]
	[Total:	10]

12 (a) Fig. 12.1 shows a bridge between two supports.

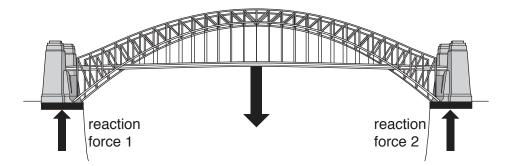


Fig. 12.1

(ii) The bridge has a mass of 625 000 kg. Calculate the downwards force of the bridge. gravitational field strength = 10 N/kg. downwards force =	(i)	Name the force that is represented by the vertical downwards arrow from the bridge.	
Calculate the downwards force of the bridge. gravitational field strength = 10 N/kg. downwards force =			[1]
downwards force =	(ii)	The bridge has a mass of 625 000 kg.	
downwards force =		Calculate the downwards force of the bridge.	
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =		gravitational field strength = 10 N/kg.	
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =			
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =			
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =			
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =			
(iii) The bridge is supported by reaction force 1 and reaction force 2. Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =			
Using your answer to (a)(ii) state the total size of the reaction forces (reaction force reaction force 2). Explain your answer. total reaction forces =		downwards force = N	[2]
reaction force 2). Explain your answer. total reaction forces =	(iii)	The bridge is supported by reaction force 1 and reaction force 2.	
total reaction forces =		Using your answer to (a)(ii) state the total size of the reaction forces (reaction force 1 reaction force 2).	+
		Explain your answer.	
		total reaction forces =	N
		explanation	

[2]

(b)		bridge is supported on granite rocks. Radioactive radon gas seeps out of the rocks in all quantities.
	(i)	State one danger of ionising radiation to living things.
		[1]
	(ii)	A radiation counter produces a clicking sound for each ionising particle detected.
		A piece of paper is placed between the rock and the counter and the clicking sounds stop.
		State the type of radiation that is being emitted by the rock.
		[1]
	(iii)	Radon gas from rocks contributes to background radiation.
		Suggest one other source of background radiation.
		[1]
	(iv)	A sample of granite contains 1 000 000 atoms of radon-222.
		Radon-222 has a half life of 3.8 days.
		Calculate the number of radon-222 atoms remaining after 7.6 days.
		Show your working.
		number of atoms remaining[2]
		[Total: 10]

13 (a) Fig. 13.1 is a diagram of the male reproductive system.

Fig. 13.1

	(i)	Name two liquids carried by the tube labelled A in Fig. 13.1.	
		1	
		2	[2]
	(ii)	Sperm swim in a liquid secreted from one part of the male reproductive system show Fig. 13.1.	n in
		Draw an X on Fig. 13.1 to identify this part.	[1]
(b)	(i)	State the term that describes the fusion of nuclei of male and female gametes.	
	(ii)	State the part of the male reproductive system where gametes are produced.	[1]
			[1]
	(iii)	State the name of the female gamete.	
			[1]
(c)	Rep	production is one of the characteristics of living things.	
	Sta	te two other characteristics of living things.	
	1		
	2		
			[2]

[Total: 8]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

S
Ħ
7
=
Ë
<u>•</u>
Ш
4
₹
<u>e</u>
ab
ā
Ë
ပ
=
0
\equiv
<u>0</u>
ë
erio
Perio
Perio
he Perio
Perio

	=	2	He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
					6	ட	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	At	astatine -			
	5				8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium	116		livermorium -
	>				7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209			
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ър	lead 207	114	ŀΙ	flerovium -
	=				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204			
											30	Zu	zinc 65	48	В	cadmium 112	80	Ρ̈́	mercury 201	112	Ö	copernicium
											29	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
Group											28	Ë	nickel 59	46	Pd	palladium 106	78	£	platinum 195	110	Ds	darmstadtium -
Gro											27	ဝိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	Μ̈́	meitnerium -
		-]	I	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium -
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium
					_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	д	tantalum 181	105	Dp	dubnium —
						atc	rek				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	26	Ba	barium 137	88	Ra	radium -
	_				က	:=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	ВВ	rubidium 85	55	Cs	caesium 133	87	ъ́	francium -
CLF:	S 201														065	4/33/	/N /I /	1/4 0	,			

F <u></u>	lutetium 175	103	۲	awrencium -
° 2	ytterbium 173	102	9	nobelium
69 E	thulium 169	101	Md	mendelevium -
88 Г	erbium 167	100	Fm	fermium -
67 H	holmium 165	66	Es	einsteinium -
₉ 2	dysprosium 163	86	ರ	califomium -
65 T	terbium 159	26	Ř	berkelium -
49 C	gadolinium 157	96	Cm	curium
63 T	europium 152	92	Am	americium -
.S. C.	samarium 150	94	Pu	plutonium -
P ₀	promethium	93	ď	neptunium -
° Z	neodymium 144	92	\supset	uranium 238
59 P	praseodymium	91	Ра	protactinium 231
ي به ج	cerium 140	06	드	thorium 232
57 G	lanthanum 139	88	Ac	actinium -

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).